Типы вероятностных выборок и их реализация
В общем случае кластерная выборка основана на первоначальном отборе группировок (кластеров) и затем — на изучении всех единиц внутри кластеров. Возможными примерами кластеров, используемых в больших общенациональных опросах, являются сельские районы, городские квартиры, избирательные участки. При изучении специфических популяций используются иные кластеры: больницы — при изучении пациентов, школы — при изучении школьников и т. п.
Корректное применение кластерной процедуры основано на неукоснительном соблюдении четырех необходимых условий:
1) кластеры должны быть однозначно и явно заданы: каждый член генеральной совокупности должен принадлежать к одному (и только одному) кластеру;
2) число членов генеральной совокупности, входящих в каждый кластер, должно быть известно или поддаваться оценке с приемлемой степенью точности;
3) кластеры должны быть не слишком велики и географически компактны, иначе кластерная выборка теряет всякий финансовый смысл;
4) выбор кластеров должен быть осуществлен таким способом, который минимизирует рост выборочной ошибки (последний процесс, в свою очередь, является неизбежным следствием кластеризации).
Для того чтобы уяснить, как именно кластерная процедура влияет на рост выборочной ошибки, рассмотрим ее на простейшем примере. Допустим, мы изучаем труд и занятость жителей небольшого сельского района. Для того чтобы составить полный список-основу для случайной выборки, нам пришлось бы предварительно посетить все сельские советы, а в некоторых случаях — и весьма отдаленные деревни. Располагая ограниченными ресурсами, мы решаем использовать имеющуюся в нашем распоряжении карту района, на которой отмечены все населенные пункты, включая самые небольшие хутора. Известна и численность населения для каждого пункта. Естественными границами кластеров-поселений являются шоссе и проселочные дороги. Составив список всех 40 деревень и хуторов, мы можем теперь без труда осуществить простую случайную выборку кластеров. Для отдельного поселения вероятность попадания в выборку составит 1/40. Если, например, мы собираемся опросить 200 человек, нам, скорее всего, потребуется отобрать 1—2 кластера-поселения. Отметим здесь, что естественные различия в величине кластеров никак не влияют на процедуру кластерного отбора.
Что при этом происходит с выборочной ошибкой и, следовательно, с получаемыми в нашем исследовании статистическими параметрами генеральной совокупности сельского населения района (т. е. с оценками возраста, дохода и т. п.)? Чтобы ответить на этот вопрос, мы должны ввести еще одно статистическое понятие «независимых наблюдений» (степеней свободы).
Предположим, мы хотим оценить соотношение работающих и пенсионеров в обследуемом нами районе. Мы отобрали, условно, три деревни по 30 домовладений каждая (итого 90 домовладений). Однако в ходе опроса выясняется, что в двух деревнях, не входящих ни в одно сельхозобъединение или кооператив, живут исключительно старики-пенсионеры, а в одной, построенной недавно для переселенцев из Средней Азии, живут только молодые семьи с детьми. Таким образом, каждая деревня является населенной либо только работающими семейными парами, либо исключительно «пенсионерской». В результате мы можем заранее предсказать результат обследования каждой деревни (кластера), посетив лишь один дом. Если в первом доме интервьюер обнаружит чету пенсионеров, во всех остальных домах тоже будут жить пенсионеры. Если в первом доме живут люди трудоспособного возраста, посещение остальных 29 домовладений приведет к тому же результату. Фактически для каждой деревни мы будем располагать одним независимым наблюдением и, посетив 90 семей в трех деревнях, получим лишь три независимых, информативных наблюдения относительно распределения работающих и пенсионеров в выборке. Соответственно наши оценки величины данного соотношения в генеральной совокупности окажутся более неточными, чем в случае 90 независимых наблюдений. Причина возникающей ошибки заключается в том, что использованные вами кластеры (деревни) оказались гомогенными, однородными по исследуемому признаку трудовой занятости, хотя по другим признакам, например, по политической активности, они вполне могут быть гетерогенными, неоднородными. В принципе можно показать, что рост выборочной ошибки для кластерной выборки (в сравнении с простой случайной) является функцией двух нерешенных — величины кластеров и гомогенности исследуемого признака внутри каждого кластера.